Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
J Math Biol ; 85(4): 36, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: covidwho-2048225

RESUMEN

The Susceptible-Infectious-Recovered (SIR) equations and their extensions comprise a commonly utilized set of models for understanding and predicting the course of an epidemic. In practice, it is of substantial interest to estimate the model parameters based on noisy observations early in the outbreak, well before the epidemic reaches its peak. This allows prediction of the subsequent course of the epidemic and design of appropriate interventions. However, accurately inferring SIR model parameters in such scenarios is problematic. This article provides novel, theoretical insight on this issue of practical identifiability of the SIR model. Our theory provides new understanding of the inferential limits of routinely used epidemic models and provides a valuable addition to current simulate-and-check methods. We illustrate some practical implications through application to a real-world epidemic data set.


Asunto(s)
Enfermedades Transmisibles , Epidemias , Enfermedades Transmisibles/epidemiología , Brotes de Enfermedades , Susceptibilidad a Enfermedades/epidemiología , Modelos Epidemiológicos , Humanos
2.
Int J Environ Res Public Health ; 19(3)2022 01 26.
Artículo en Inglés | MEDLINE | ID: covidwho-1686732

RESUMEN

Humans are exposed to a diverse mixture of chemical and non-chemical exposures across their lifetimes. Well-designed epidemiology studies as well as sophisticated exposure science and related technologies enable the investigation of the health impacts of mixtures. While existing statistical methods can address the most basic questions related to the association between environmental mixtures and health endpoints, there were gaps in our ability to learn from mixtures data in several common epidemiologic scenarios, including high correlation among health and exposure measures in space and/or time, the presence of missing observations, the violation of important modeling assumptions, and the presence of computational challenges incurred by current implementations. To address these and other challenges, NIEHS initiated the Powering Research through Innovative methods for Mixtures in Epidemiology (PRIME) program, to support work on the development and expansion of statistical methods for mixtures. Six independent projects supported by PRIME have been highly productive but their methods have not yet been described collectively in a way that would inform application. We review 37 new methods from PRIME projects and summarize the work across previously published research questions, to inform methods selection and increase awareness of these new methods. We highlight important statistical advancements considering data science strategies, exposure-response estimation, timing of exposures, epidemiological methods, the incorporation of toxicity/chemical information, spatiotemporal data, risk assessment, and model performance, efficiency, and interpretation. Importantly, we link to software to encourage application and testing on other datasets. This review can enable more informed analyses of environmental mixtures. We stress training for early career scientists as well as innovation in statistical methodology as an ongoing need. Ultimately, we direct efforts to the common goal of reducing harmful exposures to improve public health.


Asunto(s)
National Institute of Environmental Health Sciences (U.S.) , Proyectos de Investigación , Exposición a Riesgos Ambientales/análisis , Métodos Epidemiológicos , Estudios Epidemiológicos , Humanos , Medición de Riesgo , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA